

Effects of Cross-Linking Agents on Stability & Rheological Properties of Polymer Modified Bitumen

Tirupan Mandal, Ryan Sylla, and Hussain Bahia **University of Wisconsin-Madison, USA**

Shayan Barmand **RAETEX, Doha, Qatar**

Hypothesis and Objective

• Hypothesis:

- Cross-linking of elastomeric polymers used for bitumen modification can significantly increase value of such polymers.
- Objective:

 Evaluation of effectiveness of various cross-linking agents in improving stability & rheological properties of modified binders.

The New Grading System- M332– PG xx(z)-yy

Middle East Region PG grading Requirements

Source: Eng. M. S. Aazam, MOT- KSA, 2006

Multiple Stress Creep and Recovery (MSCR) -ASTM 7045-10, AASHTO T350

- Creep stress:0.1 kPa, 3.2 kPa
- 10 cycles
 - 1 sec constant creep stress
 - 9 sec zero stress
- Output: Creep compliance (Jnr) and Percent Recovery (%R) at 0.1 kPa, and 3.2 kPa

MODIFIED

RESEARCH CENTER

MARC

1. AASHTO MP19 Specifications Based on NCHRP 9-10 Project – Report 459

Rolling Thin-Film Oven Residue (T 240)

Mass change, max, percent ^f	1.00	
MSCR, T350: Traffic Grades	Test	Temperature
Standard Traffic "S" Grade J _{nr3.2} , max 4.0 kPa ^{−1} , J _{nrdiff} , max 75%	70	76
Heavy Traffic "H" Grade J _{nr3.2} , max 2.0 kPa ^{−1,} , J _{nrdiff} , max 75%∖	70	76
Very Heavy Traffic "V" Grade J _{nr3.2} , max 1.0 kPa ^{-1 ,} J _{nrdiff} , max 75%	70	76
 Extremely Heavy Traffic "E" Grade J_{nr3.2}, max 0.5 kPa⁻¹ , J_{nrdiff}, max 75% 	70	76

MODIFIED ASPHALT

RESEARCH CENTER

MARC

Advanced Performance Grading System for Qatar – AASHTO MP19

• Direct and effective consideration of Traffic

	Adjustin E	g the Jnr limits Mea nvironmental Grad	asured at le
Traffic Volume	Т	affic Speed - Load Ra	te
(Million)	Standing ^b	Slow ^c	Standard ^d
0.3 to < 3	Н	Standard	S
3 to < 10	V	$\mathbf{H}_{\mathrm{igh}}$	Н
10 to < 30	E	V ery high	V
≥ 30	E	Extremely high	E

b-Standing Traffic—Average traffic speed is < 20 km/h. ^{*c*} *Slow Traffic*—Average traffic speed >20 to <70 km/h, ^{*d*} *Standard Traffic*—average traffic speed is > 70 km/h.

Materials to Produce PG 76 E-10

- One bitumen: 60/70 Pen Grade from Middle East Source – PG 64
- One Target Modified Grade: PG 76 E 10
 - -2 Polymers:
 - Elastomer- Linear and Radial SBS
 - Functionalized(Oxidize)PE
 - -7 Cross-Linking Agents
 - Sulfur-based
 - Non-sulfur based

Cross-Linking Agents Used

Cross-linking Agent	CL1 (Sulfur)	CL2	CL3	CL4	CL5	CL6	CL7
Physical State	FP	FP	FP	Gel	FP	FP	FP
Color	Yellow	Yellow	Yellow	Yellow	Yellow	Yello-brown	Yello-brown
Specific Gravity*	2.07	1.59	1.54	NA	NA	1.1	1.1
Melting Point (°C)*	113	82	63	NA	NA	107	107
H ₂ O Solubility*	IS	IS	Not very soluble	IS	IS	Partially	Partially
Odor*	MO	C	C	C	MO	MO	MO

* Values obtained from manufacturer's specification; FP - Fine Powder, IS – Insoluble,

C – Characteristic, MO – Mild to odorless

Trail Testing with Sulphur (CL1) – Convert 60/70 Pen to PG 76 E -10

• To select Elastomer and Functionalized Polyethylene to be used

РМВ	Elastomer (%)	F Polyethylene (%)	Cross-linking Agent
1	4	0	0.1% CL1
2	4	1.5	0.1% CL1
3	4#	0	0
4	4#	1.5	0
5	4	1.5	0
6	4	1.5	0.225% CL1
7	4.5	1	0
8	4.5	1	0.225% CL1
9	3.5	1.5	0.225% CL1

*Neat Bitumen; # Radial Elastomer; Note: All % are by weight of neat bitumen

Results of Initial Trial Testing

WISCONSIN MADISON

Experimental Plan (Second Phase) - None to 0.3% CL, Vary Curing Time

Binder	Elastomer (%)	Polyethylene (%)	Cross-linking Agent
1*	0	0	0
2	4	1.5	0
3	4	1.5	0.1% CL1
4	4	1.5	0.225% CL1
5	4	1.5	0.1% CL2
6	4	1.5	0.1% CL3
7	4	1.5	0.25% CL4
8	4	1.5	0.1% CL5
9	4	1.5	0.1% CL5 (with extended curing)
10	4	1.5	0.225% CL5 (with extended curing)
11	4	1.5	0.3% CL6
12	4	1.5	0.3% CL7

*Neat Bitumen; Note: All % are by weight of neat bitumen

Testing Methods

Test Method	Standards	Evaluation Parameters/Response	Test Conditions
Rotational Viscometer (RV)	AASHTO T-316 or ASTM D 4402	Viscosity	Test Temperatures (°C): 135 Speed (rpm) 1, 20, 100
Multiple Stress Creep Recovery (MSCR) Test	AASHTO TP70 or ASTM D7405	J _{nr} , and Stress Sensitivity	Test Temperatures (°C): 76 Stress Levels (kPa) 0.1, 3.2
Storage Stability	ASTM D5892	J _{nr} , and Stress Sensitivity	Test Temperatures (°C): 76 Stress Levels (kPa) 0.1, 3.2

RV Results - RE + Sulfur is the only failure

MSCR Results - 3.2 kPa

MSCR results- at 0.1, 3.2, and 10 kPa

DMD	%Recovery			J _{nr}		
PWD	0.1 kPa	3.2 kPa	10 kPa	0.1 kPa	3.2 kPa	10 kPa
Neat Binder	12.81			30.61		
4% LE + 1.5% FPE	89.85]		0.20		
 No Difference at 0.1 kPa Therefore, this stress level is not 						
	, IL IS					
4% LE+1.5% FPE+0.225% CL5 (E C)	99.49			0.01		
4% LE + 1.5% FPE + 0.3% CL6	98.34	-		0.03		
4% LE + 1.5% FPE + 0.3% CL7	98.47			0.02		
4% RE + 1.5% FPE	92.11			0.09		
4% RE + 1.5% FPE + 0.1% Sulfur	101.91			-0.01		
4% RE + 1.5% FPE + 0.225% Sulfur	102.56			-0.02		

MSCR results- at 3.2kPa, and 10 kPa Which PMBs can meet the E grade?

DMD	%Recovery	@76 C	J _{nr} @ 76 C		
FIND	3.2 kPa	10 kPa	1.0 kPa	3.2 kPa	10 kPa
Neat Binder	13.04			31.99	
4% LE + 1.5% FPE	3.17			5.85	
4% LE + 1.5% FPE + 0.1% Sulfur	45.21			1.60	
4% LE + 1.5% FPE + 0.225% Sulfur	91.72		0.02	0.18	
4% LE + 1.5% FPE + 0.1% CL2	15.60			3.02	
4% LE + 1.5% FPE + 0.1% CL3	10.99			3.48	
4% LE + 1.5% FPE + 0.25% CL4	20.58			3.10	
4% LE + 1.5% FPE + 0.1% CL5	30.56			2.34	
4% LE+1.5% FPE + 0.1% CL5 (E C)	49.94			1.41	
4% LE+1.5% FPE+0.225% CL5 (E C)	91.34		0.01	0.17	
4% LE + 1.5% FPE + 0.3% CL6	77.96		0.03	0.58	
4% LE + 1.5% FPE + 0.3% CL7	24.63			2.80	
4% RE + 1.5% FPE	35.30			2.35	
4% RE + 1.5% FPE + 0.1% Sulfur	78.31		-0.01	0.37	
4% RE + 1.5% FPE + 0.225% Sulfur	98.04		-0.02	0.02	

WISCONSIN

Jnr vs. %Recovery at 3.2 kPa stress level

Grade of the cross-linked binder from the Jnr values

Dinder	@3.2 kPa		Quede	
Binder	% R	JnR	Grade	
4% LE + 1.5% FPE + 0.1% Sulfur	45.2	1.6	н	
4% LE + 1.5% FPE + 0.225% Sulfur	91.7	0.2	E	S: Standard
4% LE + 1.5% FPE + 0.1% CL2	15.6	3.0	S	Jnr: 4.0 (1/kPa)
4% LE + 1.5% FPE + 0.1% CL3	10.9	3.5	S	
4% LE + 1.5% FPE + 0.25% CL4	20.6	3.1	S	H: Heavy
4% LE + 1.5% FPE + 0.1% CL5	30.6	2.3	S	Jnr: 2.0 (1/kPa)
4% LE + 1.5% FPE + 0.1% CL5 (E curing)	49.9	1.4	Н	
4% LE + 1.5% FPE + 0.225% CL5 (E curing)	91.3	0.2	E	V: Very Heavy
4% LE + 1.5% FPE + 0.3% CL6	77.9	0.6	V	Jnr: 1.0 (1/kPa)
4% LE + 1.5% FPE + 0.3% CL7	24.6	2.8	S	
4% RE + 1.5% FPE	35.3	2.4	S	E: Extremely Heavy
4% RE + 1.5% FPE + 0.1% Sulfur	78.3	0.4	E] Jnr: 0.5 (1/kPa)
4% RE + 1.5% FPE + 0.225% Sulfur	87.7	0.02	E	

Ranking of Modified Binders

• RV Test

- Poor performance: Viscosity > 3000 cP
- Very good performance: Viscosity < 3000 cP</p>

• MSCR test

MODIFIED

RESEARCH CENTER

MARC

- Poor performance: $J_{nr} > 4.0$
- Average performance: J_{nr} between 2.0-4.0
- Good performance: J_{nr} between 0.5-2.0
- Very good performance: J_{nr} below 0.5.

Storage stability test

- Poor performance: %Difference >20%,
- Average performance: %Difference between 15%-20%
- Good performance: %Difference between 10-15%
- Very good performance: %Difference below 10%.

Ranking of Best 7 Modified Binders - Only 7 had no poor performance

Binder	RV Test	MSCR Test	Storage Stability Test	Ranking	
4% LE + 1.5% FPE + 0.225% Sulfur				1	
4% LE + 1.5% FPE + 0.3% CL6				2	
4% LE + 1.5% FPE + 0.225% CL5 (extended curing)				3	Very
4% LE + 1.5% FPE + 0.1% CL5 (extended curing)				4	Good
4% LE + 1.5% FPE + 0.25% CL4				5	Average
4% LE + 1.5% FPE + 0.1% Sulfur				6	Deer
4% LE + 1.5% FPE + 0.3% CL7				7	Poor
4% RE + 1.5% FPE + 0.1% Sulfur				-	
4% LE + 1.5% FPE + 0.1% CL2				-	
4% LE + 1.5% FPE + 0.1% CL3				-	
4% LE + 1.5% FPE + 0.1% CL5				-	
4% RE + 1.5% FPE				-	
4% LE + 1.5% FPE				-	W
4% RE + 1.5% FPE + 0.225% Sulfur				-	THE UNIVERSITY WISCONSIN MADISON

Conclusions

- Influential parameters:
 - Type of cross-linking agent
 - Concentration of Cross-linking agent
 - Polymer type, and
 - Curing time
- Cross-linking concentration was by far the most important
- Viscosity and MSCR are interrelated, while storage stability is completely independent of viscosity and MSCR
- Cross-linking is necessary for storage stability

Conclusions

- MSCR testing and analysis issues:
 - Testing at 0.1 kPa should not be used
 - Stress sensitivity is important, but stress levels should be selected in a more realistic way (> 10 kPa)
 - Jnr Difference criterion needs some modification and some justification.

Over Loading

Source: Prof. Kim Jenkins

Thank you!

Questions?

A VARTANA AN

ALL AND AND A

Tracking Micro-Structural Evolution of HMA in Rutting- Methodology

MODIFIED ASPHALT

RESEARCH CENTER

MARC

FE Simulation of Asphalt Mixture Behavior - Macro Scale

• Extending the analysis results to the case of a standard 18 kip (80 kN) load, the average shear stress in the binder phase of all of the mixtures considered in this study were calculated

Gradation Binder	Fine	Intermediate	Coarse
HIHD	14	11	22
LIHD	16	12	23
HILD	16	12	23
LILD	18	13	24

Average shear stress level (KPa) in binder phase of mixtures

28

